

Final Project Sprint 01
Effort: Individual

Points: 50 pts

Deliverables: Upload this document as Word document or PDF containing answers and

separate video file . Do not upload both video and document in a zip file.

Goals:

ABET Outcome 2: Design, implement, and evaluate a computing-based solution to meet

a given set of computing requirements in the context of the program’s discipline.

● Create effective and efficient web app designs that include.

○ Develop solutions utilizing OOP principles and relationship

○ Develop unit, integration and system testing that are automated following

industry best practices

● Implements the solution effectively using agile methodologies, web app theories,

design patterns and architectures.

● Evaluate and test to ensure it meets requirements and functions as intended.

Final Web App Project

1 Web App Functionality

2 Project Design and Planning (10)

2.1 Design the Data Structures and Routes

2.2 Rspec Testing

2 Sprint 01 Project Development and Demonstration

2.1 Project Task Management and Version Control (10)

2.2 Development (20)

2.3 Customer Demonstration (10)

Final Web App Project

1 Web App Functionality

App should contain the following unless you have permission from me to

do something different

Highlight below what you completed in iteration 01 when you submit

● Create new Rails App

● App must have at least 2 models that contain

○ at least 2 required attributes for each model

○ At least 4 different data types

○ One of the following relationships

https://docs.google.com/document/d/1w-JOtg74mWMsuwHzq-NuErUZCVKAl2fo/edit#heading=h.gjdgxs

■ One to one

■ One to many

● One stakeholder: A user that has an association with at least another item

(model) where the user can

■ Register

■ Logout

■ Login

■ Create a new item

■ Edit item

■ Destroy Item

● Another stakeholder: Should be able to view and search items (do not need to

log in but can have requirement that other stakeholder also must log in)

○ App should show list of all items on page

○ Display information about each item individually

● Implement UI

○ Using Bootstrap

○ Responsive to different size screens

○ Design for Accessibility

■ ARIA Labels

■ Dos and don'ts on designing for accessibility

● Implement Rspec Testing

○ 4 unit tests for model

○ 4 System Tests with Capybara

■ 2 different user story tests with happy and sad path

scenarios

● Feature Research, Design and Implementation

2 Project Planning and Design (10)

Create a public github Repository

Link to repository:

https://github.com/willmaddock/final-project/tree/Sprint01

Create a Backlog of Issues for your User Stories

Link to GitHub Issues:

https://github.com/willmaddock/final-project/issues

https://guides.rubyonrails.org/v7.1/association_basics.html
https://accessibility.blog.gov.uk/2016/09/02/dos-and-donts-on-designing-for-accessibility/
https://github.com/willmaddock/final-project/tree/Sprint01
https://github.com/willmaddock/final-project/issues

2.1 Design the Data Structures and Routes

Include UML model and describe

● Model Validations

Model Validations

• User Model:

username: Presence and uniqueness validation.

password_hash: Presence validation.

role: Inclusion validation to ensure it matches predefined roles.

• Profile Model:

full_name and email: Presence validation.

email: Uniqueness and format validation.

user_id: Presence validation with uniqueness constraint to enforce

one-to-one relationship.

• AccessPoint Model:

location: Presence and uniqueness validation.

access_level: Presence validation, ensuring it is an integer.

status: Presence validation.

• AccessLog Model:

timestamp: Presence validation.

user_id and access_point_id: Presence validation, ensuring valid

associations.

Model Relationships

User - Profile: One-to-One (User has one Profile).

User - AccessLog: One-to-Many (User has many AccessLogs).

AccessPoint - AccessLog: One-to-Many (AccessPoint has many

AccessLogs).

Routes

 User Routes:

GET /users: List all users.

POST /users: Create a new user.

GET /users/:id: Show user details.

PATCH /users/:id: Update user information.

DELETE /users/:id: Delete user.

 Profile Routes:

GET /profiles/:id: Show a user’s profile.

PATCH /profiles/:id: Update a user’s profile.

 AccessPoint Routes:

GET /access_points: List all access points.

POST /access_points: Create a new access point.

GET /access_points/:id: Show access point details.

PATCH /access_points/:id: Update access point.

DELETE /access_points/:id: Delete access point.

 AccessLog Routes:

GET /access_logs: List all access logs.

POST /access_logs: Record a new access attempt.

GET /access_logs/:id: Show specific access log details.

2.2 Rspec Testing

Identify the 4 unit tests you will write for a model

The model being tested in the spec/models/user_spec.rb file is the User

model. This model includes the following functionalities and attributes:

1. Validation of Essential Fields

Ensures that required fields, like username and email, are present for the

model to be valid.

2. Uniqueness of Fields

Checks that fields such as username and email are unique, ensuring no

duplicate usernames or emails.

3. Role-Based Authorization

Verifies that specific roles (e.g., admin, shipping_agent, and

logistics_manager) have the appropriate permissions. For instance:

Admins can create items.

Shipping agents cannot create items.

Logistics managers can audit logs.

4. Status Change

Tests the active attribute toggle functionality, which switches the user’s

status between active and inactive.

Identify the System Tests

List the 2 user stories with the steps for happy and sad path scenarios

1st system test (completed both spec and test):

spec/system/agent_login_spec.rb

test/system/agent_login_test.rb

System Test 1: User Story - Agent Logs in with Secure Credentials

1. Scenario 1: Agent successfully logs in (Happy Path)

Given the agent has valid login credentials

When they enter their username and password

Then they gain access to the dashboard

2. Scenario 2: Agent enters incorrect password (Sad Path)

Given the agent has invalid login credentials

When they enter an incorrect password

Then they receive an “Invalid credentials” message and cannot proceed.

2nd system test (completed both spec and test):

spec/system/restricted_area_access_spec.rb

test/system/restricted_area_access_test.rb

System Test 2: User Story - Agent Accesses Restricted Areas for

Delivery

1. Scenario 1: Agent has the necessary clearance (Happy Path)

Given the agent has clearance for elevator and stairwell access

When they request access to a restricted area (elevator or stairwell)

Then the shipping agent waits for the logistics manager to approves

it.

And logistics manager grants them access, allowing them to proceed

without delays.

2. Scenario 2: Agent lacks necessary clearance (Sad Path)

Given the agent does not have the required clearance for certain

floors or areas

When they attempt access to these areas

Then the system checks their credentials

And logistics manager denies access with a notification explaining

the clearance issue.

2.3 UI

Design for accessibility

Users Design Practice to be Implemented

autistic spectrum

Design Practices to Implement:

Avoid overloading pages with information or

distracting elements.

Use simple, clear language and concise

instructions.

Create a predictable layout with consistent

navigation and visual hierarchy.

Avoid animations or auto-playing media that

may be overwhelming.

Design Benefit: This reduces cognitive load,

making the interface easier for users to

understand and navigate.

screen readers

Design Practices to Implement:

Provide descriptive and unique labels for all

interactive elements (e.g., buttons, forms).

Use semantic HTML to allow screen readers to

interpret the content correctly.

https://accessibility.blog.gov.uk/2016/09/02/dos-and-donts-on-designing-for-accessibility/

Structure headings logically (H1 for page title,

H2 for sections) to help users navigate.

Add alt text for images and ensure links make

sense out of context (e.g., avoid “click here”).

Design Benefit: Ensures that visually impaired

users can navigate and understand content

accurately.

 low vision

Design Practices to Implement:

Use high-contrast color schemes for text,

buttons, and backgrounds.

Allow font resizing or provide zoom options for

better readability.

Avoid using color as the only way to convey

information (e.g., use icons or patterns).

Ensure that links and buttons are large enough

to be easily clicked.

Design Benefit: Enhances readability and

interaction for users who have limited vision.

 physical or motor

disabilities

Design Practices to Implement:

Create large, easy-to-click buttons and provide

ample spacing between clickable elements.

Ensure full keyboard navigation for all elements

(form fields, menus, buttons).

Avoid features requiring precise control, such as

drag-and-drop or swiping.

Limit the need for timed responses to prevent

added pressure.

Design Benefit: Improves ease of use for

users with limited fine motor skills or tremors.

D/deaf or hard of hearing

Design Practices to Implement:

Provide captions for all video content and

transcriptions for audio-only media.

Avoid relying solely on sound to convey

information; use visual cues as well.

For alerts or notifications, use visual indicators

in addition to or instead of sounds.

Design Benefit: Ensures that important

content and feedback are accessible without

sound.

dyslexia

Design Practices to Implement:

Use simple, readable fonts and avoid overly

decorative typefaces.

Allow for customization of text spacing to

improve readability.

Avoid large blocks of text; use bullet points,

images, or icons to break up content.

Left-align text and avoid justified text to

prevent uneven spacing.

Design Benefit: Makes reading content easier

and reduces visual strain for dyslexic users.

2 Sprint 01 Project Development and

Demonstration

2.1 Project Task Management and Version Control (10)

Break into Tasks

Decide what user stories you will implement for this sprint and the tasks.

Suggestion: focus on functionality and unit tests for two models

List User Story tasks and development tasks for this spring. Include a time

estimate to help you budget your time. You can either put it below or create

a task board that contains a user story number with a task and time

estimate.

Example Tasks

● Models/Database set up,

● Model validations and relationships

● TDD rspec model unit testing

● Routes and Controller

● Views

● Search

● Seed Database

● UI and Accessibility

● Model Testing

● Rspec System testing

User Story and Development
tasks

Tasks Time
Estimate

Development Set Up

1 User story

Create a public Project board in github for Sprint 01 with the following

columns

Sprint Backlog To Do In Process Done

Add tasks for the user stories

Link to public project github task board:

https://github.com/users/willmaddock/projects/2

You will also create a new github repository for using git to version your

project. Follow version control practices.

Link to public project github repository

https://github.com/willmaddock/final-project/tree/Sprint01

How you used version control with git and github

1. Commit Frequency:

I commit frequently after completing a feature or significant change,

typically once per day.

2. Commit Messages:

I use clear messages like:

“Add [feature]”

“Fix [issue]”

“Refactor [code]”

“Update [doc/config]”

3. Branches:

I create a new branch for each feature or bug fix to keep the main branch

clean.

4. Managing and Merging Changes:

I pull the latest changes regularly and resolve conflicts. I use pull requests

for review before merging.

https://github.com/users/willmaddock/projects/2
https://github.com/willmaddock/final-project/tree/Sprint01

5. Collaboration:

I use pull requests for new features or fixes and GitHub Issues to track

tasks and bugs.

First Push to Version v0.0:

I created the repository and initialized the project, then made the first

commit:

“Initial commit with basic project setup”

This commit is labeled as v0.0, marking the starting point of version

control.

The final version of sprint01 will be v0.4.

2.2 Development and Testing (20)

Give a description and the commands for the following

How you created a new docker instance.

1. Project Directory Setup: First, I created a new folder for the project

(e.g., Final-Project) and placed updated Docker build files in this directory.

2. Building the Docker Image: In the terminal, I navigated to my

project directory and built the Docker image with:

docker buildx build -t your_dockerhub_username/your_app_name .

3. Running the Docker Container: I started the container using:

docker run -it -p 3000:3000 -v "$(pwd):/workspace"

your_dockerhub_username/your_app_name

Here is the link to my M06 technical documentation:

https://github.com/rileymck/WebDev-2024/blob/main/M06-William-

Creating-A-Branch.pdf

How you installed rails

Rails was installed using the Rails gem within Docker, using updated

Docker files to ensure all dependencies aligned with Rails setup:

https://github.com/rileymck/WebDev-2024/blob/main/M06-William-Creating-A-Branch.pdf
https://github.com/rileymck/WebDev-2024/blob/main/M06-William-Creating-A-Branch.pdf

rails new access_management_app --skip-bundle

cd access_management_app

bundle install

Later updated it using Deb’s way. Here is the link in canvas.

https://msudenver.instructure.com/courses/98620/discussion_topics/1386

406

How you created your models and set up database

Generating Models: I created models using rails generate model

commands, based on the project requirements.

User Model, View, and Controller Scaffold:

rails generate scaffold User username:string password_hash:string

full_name:string email:string role:string access_level:integer

last_login:datetime status:boolean

Profile Model, View, and Controller Scaffold:

rails generate scaffold Profile user:references bio:text location:string

avatar:string

Access Point Model, View, and Controller Scaffold:

rails generate scaffold AccessPoint location:string access_level:integer

description:text status:Boolean

Access Log Model, View, and Controller Scaffold:

rails generate scaffold AccessLog user:references access_point:references

timestamp:datetime successful:Boolean

Elevated Access Request Model, View, and Controller Scaffold:

rails generate scaffold ElevatedAccessRequest user:references

access_point:references status:string

https://msudenver.instructure.com/courses/98620/discussion_topics/1386406
https://msudenver.instructure.com/courses/98620/discussion_topics/1386406

Database Setup: I ran the following commands to set up the database:

rails db:create

rails db:migrate

This process created necessary tables and relationships for the User,

AccessPoint, and other models.

Problems Solving

Describe an issue you encountered and explain what you did to resolve the

issue.

Issue: One issue I encountered was an error with

ActiveModel::UnknownAttributeError for attributes not defined in my

models.

Resolution: To fix this, I verified attribute names and confirmed they

matched those in the schema and migration files, which resolved the issue.

What resources helped you the most for completing sprint 01?

Helpful Resources: The Rails documentation and Docker setup guides

were especially useful, as well as Stack Overflow for debugging errors.

Here are links to some resources that provide guidance on resolving

ActiveModel::UnknownAttributeError and understanding attributes in Rails

models:

1. Rails Documentation on Active Record Validations and Callbacks

Active Record Basics - Rails Guide

This guide covers Active Record validations, how models interact with the

database, and tips on defining attributes correctly.

2. Stack Overflow: Common Causes of UnknownAttributeError in

Rails

UnknownAttributeError in Rails Models - Stack Overflow

https://guides.rubyonrails.org/active_record_basics.html
https://stackoverflow.com/questions/1252199/unknownattributeerror-in-rails

This discussion includes various common causes and solutions for

UnknownAttributeError, such as mismatches between migration files and

model definitions.

3. Rails Migration Guide

Active Record Migrations - Rails Guide

Understanding migrations is key to managing attributes in Rails. This guide

explains how to create, modify, and roll back migrations to keep the

database schema in sync with model definitions.

4. Rails Database Schema Management and Schema.rb File

Rails Schema Management - Thoughtbot Blog

Thoughtbot’s blog covers tips for working with schema.rb, a key file to

verify that attributes in the database align with model definitions, which

can prevent attribute-related errors.

5. Debugging Tips from RSpec Tests

RSpec Rails Guide

The RSpec Rails guide provides detailed information on setting up model

tests, which can help verify that attributes and validations are correctly

implemented.

What concepts do you understand better after doing sprint 01?

This sprint enhanced my understanding of Docker, Rails model

relationships, and testing with RSpec.

How were your estimates for your tasks in comparison to the actual time?

The actual time for tasks was longer than estimated, especially for

configuring Docker and debugging attribute errors. However, these steps

provided valuable insights and will help improve future task estimations.

https://guides.rubyonrails.org/active_record_migrations.html
https://thoughtbot.com/blog/rails-schema-management
https://relishapp.com/rspec/rspec-rails/docs

2.3 Customer Demonstration (10)

Create a video screencast to demonstrate the requirements for sprint 01 as

if you are presenting to your customer.

● Give brief overview of app and problem statement

● Demonstrate behavior of app: A user that has an association with at least

another item (model) where the user can

■ Register

■ Logout

■ Login

■ Create a new item

■ Edit item

■ Destroy Item

https://guides.rubyonrails.org/v7.1/association_basics.html

	Final Web App Project
	1 Web App Functionality
	2 Project Planning and Design (10)
	2.1 Design the Data Structures and Routes
	2.2 Rspec Testing

	2 Sprint 01 Project Development and Demonstration
	2.1 Project Task Management and Version Control (10)
	2.2 Development and Testing (20)
	2.3 Customer Demonstration (10)

